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Abstract

Reality is a dance between rigid constraints and deformable
structures. For video models, that means generating mo-
tion that preserves fidelity as well as structure. Despite
progress in diffusion models, producing realistic structure-
preserving motion remains challenging, especially for artic-
ulated and deformable objects such as humans and animals.
Scaling training data alone, so far, has failed to resolve
physically implausible transitions. Existing approaches rely
on conditioning with noisy motion representations, such as
optical flow or skeletons extracted using an external im-
perfect model. To address these challenges, we introduce
an algorithm to distill structure-preserving motion priors
from an autoregressive video tracking model (SAM2) into a
bidirectional video diffusion model (CogVideoX). With our
method, we train SAM2VideoX, which contains two inno-
vations: (1) a bidirectional feature fusion module that ex-
tracts global structure-preserving motion priors from a re-
current model like SAM2; (2) a Local Gram Flow loss that
aligns how local features move together. Experiments on
VBench and in human studies show that SAM2VideoX de-
livers consistent gains (+2.60% on VBench, 21-22% lower
FVD, and 71.4% human preference) over prior baselines.
Specifically, on VBench, we achieve 95.51%, surpassing
REPA (92.91%) by 2.60%, and reduce FVD to 360.57, a
21.20% and 22.46% improvement over REPA- and LoRA-
finetuning, respectively. The project website can be found
at https://sam2videox.github.io/

1. Introduction

From Heraclitus to Bergson, philosophy has cast cognition
as the apprehension of becoming rather than being [1, 9].
While image generation models have excelled at generat-
ing what is there in high-fidelity images [2, 3, 16], our best
video generation still struggles to express the dynamics of
change. The central challenge is structure-preserving mo-
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tion: dynamics that maintain part topology and local neigh-
borhoods while allowing constrained deformations. With-
out these constraints, generated motions drift; limbs shear,
textures tear, and object identity is lost. Only by achiev-
ing this can models move beyond static appearance toward
faithful world simulators.

Motion remains a major challenge. This is particularly
true for articulated and highly deformable objects, such as
humans and animals, where models often suffer from incon-
sistent or physically implausible transitions in object states.
Inference-time interventions, such as ControlNet-style [37]
conditioning on explicit motion representations during in-
ference, require knowing the ideal motion apriori. Unlike
rigid objects whose motion can be well represented by sim-
ple dragged trajectories [7], articulated and deformable en-
tities lack a unified motion representation A common as-
sumption is that low motion quality stems from insufficient
training data, especially for high-quality complex articu-
lated motions. However, scaling up or augmenting train-
ing data only helps marginally; training with motion proxies
(optical flow [4], skeletons [13]) for objects [28, 35] still re-
sults in physically implausible transitions. Our experiments
show that generated videos still produce lions walking with-
out alternating legs and cyclists with static knees. Scaling
up such priors results in noisy training data; motion priors
are usually collected using imperfect models (e.g. RAFT
can generate optical flow priors [29]).

To improve articulated motion, we propose a simple but
powerful idea: deriving structure from tracking. Our model,
SAM2VideoX, distills structure-preserving motion priors
from a video tracking model into a video diffusion gener-
ator. Previous work has shown that distilling image rep-
resentations improves image generation fidelity [38]. To
generalize this insight from static to dynamic generation,
we distill video representations to improve video genera-
tion. Specifically, we leverage SAM2 [23], a state-of-the-art
video tracking model trained on large-scale, diverse video
data. SAM2 is capable of maintaining object identity across
long sequences and through complex occlusions. To track,
SAM?2’s internal representations have captured how parts
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Figure 1. We present a training algorithm to distill structure-preserving motion priors from SAM?2 into a video diffusion model to improve
motion accuracy and smoothness in generated videos. Compared to advanced image-to-video models CogVideoX [34] and Hunyuan-
Vid [16], our SAM2VideoX produces videos with superior or highly competitive fidelity, despite HunyuanVid having more than twice

number of parameters (13B vs. our 5B).

move together, how limbs stay connected, and how occlu-
sions resolve over time. Instead of conditioning generation
on explicit control signals like optical flow [4] or skele-
tons [13], SAM2VideoX extracts implicit structural cues
directly from SAM?2’s internal representations. By transfer-
ring these motion priors, the generator acquires an internal
sense of structure and continuity. In short, we leverage the
structural understanding of a tracker to guide the generation
of motion.

However, transferring useful information from SAM?2
into a video generation model is technically challenging.
We find that directly supervising diffusion models to pre-
dict SAM2 output masks yields only limited benefit, as the
masks are discrete and boundary-focused; they fail to su-
pervise useful fine-grained motion. Also, a direct align-
ment between feature spaces is hindered by an architec-
tural asymmetry: state-of-the-art video generation models
use DiT [20] architecture with bidirectional attention to ac-
cess global context, while SAM2 is inherently recurrent and
causal. To bridge this gap, we extract a supervision sig-
nal by fusing forward and backward SAM?2 features, where
backward features are extracted by reversing the order of
frames in a training video. Together, the forward and back-
ward features represent a better global video context. We
align video diffusion features with this supervisory signal
using a Local Gram Flow loss. Although /5 loss has worked
well for image generation [38], we find that a local Gram
loss captures better motion priors by emphasizing local re-
lational structure.

Across qualitative and quantitative evaluations,
SAM2VideoX yields more realistic, structurally co-
herent motion. On VBench [12] (matched dynamic degree)
we achieve 95.51%, surpassing REPA [36] (92.91%) by

2.60 points. Our FVD is 360.57, a reduction of 21.20% and
22.46% versus REPA- and LoRA-finetuning [11]. Since
existing benchmarks are limited in assessing preservation
of structure in articulated motion, we further conduct
a human evaluation, where 71.4% of ratings prefer our
results. Qualitatively, SAM2VideoX produces videos with
the correct number of legs when animals walk, ensuring
plausible human limb trajectories during complex activities,
and producing accurate human-object interactions. These
gains indicate that SAM2-guided distillation substantially
strengthens structure-preserving motion in video diffusion
models without sacrificing visual quality.

2. Related Work

Video diffusion models. Video diffusion models have
progressed rapidly, spanning both UNet-based [24] archi-
tectures such as Stable Video Diffusion [2], and DiT-
based [20] models including Sora [3], CogVideoX [34],
HunyuanVid [16], OpenSora [21], Open-Sora-Plan [17],
Wan-Video [32], Cosmos [19]. While these models can
generate visually impressive videos, producing realistic and
coherent structure-preserving motion remains challenging,
especially for articulated and deformable entities. Given the
difficulty of designing reliable inference-time control sig-
nals [37] for such objects, our goal is to enhance the base
model’s intrinsic ability to generate structure-preserving
motion without relying on auxiliary handcrafted motion
controls during inference.

Motion understanding. Understanding motion has long
been central to video analysis [10, 22]. Point trajectories
and optical flow [14, 29] describe local, adjacent-frame
changes and carry limited semantics; they often degrade un-



der fast or long-range motion and struggle to maintain ob-
ject identity through occlusions. Mask-based tracking of-
fers instance-level signals that are more stable in cluttered
scenes. SAM?2 [23] tracks user-prompted regions across
long sequences and is known to generalize well across do-
mains while preserving object identity through occlusions.
However, raw masks are discrete and boundary-focused,
which discards much of the appearance and motion struc-
ture that video diffusion models need. We therefore lever-
age SAM?2’s internal features as motion priors: they are
dense, continuous and temporally consistent, and they pro-
vide long-range correspondences that are useful for struc-
ture preservation.

Representation alignment. Representation alignment was
introduced for image generation by REPA [36] and in-
spired several follow-ups. In the video domain, two main
approaches exist: aligning diffusion features to structured
motion signals such as trajectories or flow [4, 13]; or to
generic video encoders like VideoMAEv2 [30], as in Video-
REPA [38]. Both suffer from key limitations. First, Trajec-
tories and flow provide local supervision and are sensitive
to long-range dynamics, which weakens their usefulness for
structure preservation. Second, popular video encoders like
VideoMAEV2 are optimized for high-level semantic tasks
rather than low-level motion understanding. In contrast, our
approach aligns diffusion features to SAM2’s internal fea-
tures. This prior is unified and structure-centric, allowing
transfer across humans and animals while yielding object-
consistent motion representations without requiring a spe-
cific controller at inference.

3. Preliminaries

In this work, we employ diffusion transformer (DiT) [20] as
our base video generation model, aiming to distill SAM2’s
motion understanding into the DiT to enhance its ability to
learn structure-preserving motion from in-the-wild videos.
We first introduce preliminary background on latent video
diffusion models and the SAM2 architecture.

Latent Video Diffusion Model. Diffusion models gen-
erate samples by inverting a forward noising process [8,
26, 27]. In the latent setting, a pre-trained autoencoder,
with encoder £(-) and decoder D(-), maps a video x =
{Io,...,In_1} € RNXHXWXC (4 q Jatent representation
z = &£(x), where z € RN *H'XW'xC" = At timestep ¢,
noisy latent z; is sampled as
zi=a;z+ o€, €~N(0]).

A DiT fy is trained to predict the velocity target v = o€ —
oz under the standard v-prediction objective. At inference,
iterative denoising maps zp — zg, after which the decoder
D(z¢) produces the final video.

Segment-Anything Model 2 (SAM2). The Segment-
Anything Model 2 (SAM?2) extends the image segmentation
capability of SAM 1 [15] to the video domain, i.e., tracking
an object in a video conditioned on given prompts such as
points or boxes.

Given a video x = {Iy, I1, ..., Iy—1}, SAM2 processes
the video recurrently and produces a segmentation mask
for each frame. Specifically, an image encoder Z extracts
frame embedding F' from the current frame, which is then
enhanced by a memory attention module M aggregating
historical context from a memory bank B to produce Fyyep,.
A mask decoder Dy, subsequently takes Flen, and user
prompts to generate the segmentation mask. By applying
this recurrent procedure across all frames, SAM2 produces
both a sequence of masks:

M = {My, My,....My_1}
and a sequence of memory features from M:

Fmem = {Fmem,Oa Frnem,la tey Fmem,N—1}~

4. Method

We distill SAM2’s motion structure prior into the video
DiT model by aligning their internal feature representations.
This is achieved through a learnable feature alignment mod-
ule (Sec. 4.1) that projects intermediate DiT features into a
latent space where they can be matched to those of SAM2.
To align their relational motion structures, we introduce a
novel Local Gram Flow (LGF) feature matching operator
(Sec. 4.2). Furthermore, due to the autoregressive nature
of SAM2’feature, in contrast to the bidirectional features
in DiT, we propose a method that combines SAM2’s for-
ward and backward video features into a single bidirectional
representation, providing a more suitable teacher signal to
be distilled from (Sec. 4.3). Finally, a Local Gram Flow
motion distillation loss (Sec. 4.4) is applied to enforce this
alignment in the latent space. Fig. 2 provides an overview
of our full method.

4.1. Feature Alignment Network

Formally, given a training video x, we encode it to a latent
representation z = £(x) using the video VAE, then add
noise at timestep ¢ to produce z,. The noised latent z; and
timestep ¢ are then fed into the denoising network fp, from
which we extract intermediate activations as video diffusion
features Faip € RN XH XW'XC’ "yhere N’ is the number
of latent frames. Here F4;5 denotes the activations from a
selected intermediate layer. For the same video, we extract
SAM?2’s internal features Fgane as a distillation teacher.
Compared with the output segmentation masks, the internal
feature representations provide richer spatio-temporal infor-
mation. They capture object motion and part-level dynam-
ics and can teach diffusion model internalize motion priors
beyond simple boundary cues.
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Figure 2. Method overview. The framework consists of two parallel branches: (Top) The Motion Prior Extraction branch extracts forward
and backward memory features (Ffl‘i’fm, men) from SAM?2 given a clean video, and fuses them into a bidirectional teacher representation.
(Bottom) The Video Generation Backbone takes noisy latents as input, and the intermediate DiT features F q;¢ are projected into the SAM2
space as Fair. Then the proposed Local Gram Flow loss (L.t ) is used to align the spatio-temporal structure of the projected student

features with the teacher priors.

To align F ;¢ and Fgane, We project F ;¢ into SAM2’s
feature space. Specifically, we add a projection module P
on top of Fgyir, which consists of an interpolation layer
with skip connections for temporal dimension matching,
and then followed by a three-layer MLP, yielding:

Fair = P(Fairr).

We then compute a motion distillation loss between f‘dig
and Fgane. Our final objective combines the alignment
loss with the standard diffusion loss:

i‘nig Lai + A Ltoas (Faifr, Fsanz),
R}

where Lgig is the v-prediction loss and A = 0.5 balances
the terms.

4.2. Local Gram Flow Feature Matching

To capture cross-frame spatio-temporal motion structure,
rather than performing direct one-to-one feature matching
between f‘dig and Fgane, we instead match their respec-
tive Gram matrices, which encode pairwise dot products of
token feature embeddings, i.e., pairwise token similarities.
However, computing the full Gram matrices is computation-
ally prohibitive for video diffusion models due to the large
number of tokens. We therefore propose Local Gram Flow,
which computes the dot products only between each token
and the tokens within its 7 x 7 spatial neighborhood in the
subsequent frame (see Fig. 3). This yields local similarity
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Figure 3. Illustration of the Local Gram Flow (LGF) Loss. The
LGF operator captures motion structure by computing similarities
between a token at frame ¢ and its 7x7 spatial neighborhood in
the subsequent frame ¢ 4 1. Instead of matching absolute values
(e.g., £2), we convert the resulting similarity vectors (P i, Qt,i)
into probability distributions and align them using the KL Diver-
gence. This forces the model to learn relative motion patterns, not
just feature values.

vectors at each position that model likely motion trajecto-
ries to the next frame. We denote this operator as LGF ().

4.3. Bidirectional Fusion of Causal SAM2 Features

A key challenge in aligning the feature representation of
DiT and SAM?2 is the architectural asymmetry between
them. Video DiTs typically employ bidirectional atten-
tion that allows each token to attend to all frames, whereas
SAM2’s recurrent mechanism constrains its memory fea-
ture F e, at each timestep to encode only current and past
frames. To bridge this gap and create a teacher feature
Fsano that is aware of the full video context (similar to



DiT), we construct it from both a forward and backward
pass of SAM2. The backward pass is obtained by feed-
ing the temporally reversed video into SAM2 to extract
its backward features. After obtaining the backward fea-
tures, we remap them to the original temporal order (i.e.,
t = N—1-t) to align with the forward features, produc-

ing:

fwd __ fwd fwd fwd

Fmem - {Fmem,O7 Fmem,17 R Fmem,N—l}a
bwd __ bwd bwd bwd

Fmem - {Fmemq,O? Fmem7l7 ) Fmem,N—l}'

Empirically, using separate projectors to align separately
to FI¥d and FP™4 provides marginal improvement, as gra-
dient conflicts destabilize training. We therefore fuse them
into a unified bidirectional teacher feature.

However, fusing these two features is non-trivial. As our
ablation study demonstrate (Table 2), naively adding them
(kFfvd 4 (1—k)Fbvd yleads to severe performance degra-
dation. Because the final fused feature will be aligned with
the projected DiT feature through their Local Gram Flows,
we instead directly fuse their Local Gram Flows via a con-
vex combination, which stabilizes training while preserving
complementary information:

LGF(Fsamz) = k LGF(F™ ) 4 (1 — k) LGF(F2Yd)

mem mem

4.4. Motion Distillation Loss

Finally, the motion distillation loss, L.y, is designed to
match the LGF distributions of the student Fdiﬁ‘ and the
fused teacher F'ga o, rather than enforcing one-to-one cor-
respondence as in a standard ¢2 loss. More specifically, we
align the distribution of spatio-temporal motion similarities
between the video DiT feature and the SAM?2 feature. We
therefore apply a softmax to each token’s similarity vector
(turning it into a probability distribution) and measure the
distance using the KL divergence. This approach focuses
on the relative ranking of similarities, which we argue bet-
ter captures the underlying motion structure. Specifically,
we compute probability distributions:

P = S(LGF(FSAW)),
Q = S(LGF(Fan)).

The motion distillation loss averages the KL. divergence
over all spatial tokens 2 and all N’ — 1 latent frames for
which LGF is computed:

N’'—2

Leeat (Fdiﬁ'a FSAM2)
=0 icQ

Our ablation studies (Table 2) empirically validate that
this LGF-KL combination is critical, yielding significant
gains over simpler alternatives (e.g., LGF with ¢2 loss, or
direct feature matching).

1
=@ > Y KL(Pui|| Qi)

5. Experiments

Dataset & training configuration. We curate a motion-
focused dataset of 9,837 single-subject video clips from
open-source video generation datasets(Panda70M [5], MM-
Trailer [6], MotionVid [33]), capturing diverse motion pat-
terns across animals and humans. All videos are at 8
FPS, capped at 100 frames. Our approach builds upon
CogVideoX-5B-12V [34], extracting intermediate DiT fea-
tures from the 25th block output as Fy;¢. We first obtain ob-
ject bounding boxes using GroundingDINO [18] to prompt
SAM?2 mask generation. To align with DiT features, we
propagate subject masks from both temporal directions: us-
ing the first-frame mask to compute forward features Ffd

and the last-frame mask for backward features F2V¢ . To
avoid SAM2 inference overhead during training, we pre-
compute features for clips starting at every 20 frames.

We implement LoRA fine-tuning with rank 256 and scal-
ing factor « = 128. Training uses AdamW optimiza-
tion with learning rate 1 x 10~* and momentum parameter
(81, B2) = (0.9,0.95). We train for 3,000 steps on 8 x H200
GPUs, with global batch size 32 through gradient accumu-
lation over four steps per GPU.

Baselines. We compare our complete approach, which uses
bidirectional feature fusion and Local Gram Flow loss, with
four baselines: (1) CogVideoX-5B-I2V as the base model;
(2) ’+ LoRA fine-tuning”, which simply fine-tunes the base
model with LoRA on our curated motion dataset; (3) "+
Mask supervision”, which adds a linear projection layer on
top of our projection head P to directly predict the subject
mask, trained with mask loss supervision instead of feature
alignment; (4) ”+REPA” , which utilizes REPA Loss [36] to
align DiT features with external DINOv3 [25] features.

Evaluation protocol. We evaluate across three comple-
mentary axes: objective motion metrics, perceptual quality,
and human preference. For objective evaluation, we filter
85 images and compute four metrics from the VBench-12V
suite [12]: Motion Smoothness, Subject Consistency, and
Background Consistency, and Dynamic Degree. We define
consistency metrics as measures of temporal structure sta-
bility, while Dynamic Degree quantifies the magnitude of
motion. Since consistency scores often correlate negatively
with motion magnitude(i.e., static videos trivially achieve
perfect consistency), to ensure a fair comparison of motion
quality, we exclude baselines with a lower Dynamic De-
gree than the base model. The overall Motion Score is ob-
tained by averaging the smoothness and consistency metrics
(min-max normalized). For the Extended Motion Score, we
incorporate 12V-Subject and 12V-Background Consistency
with a 0.5 weight, following the official VBench protocol.
For perceptual quality, we compute Fréchet Video Distance
(FVD) [31] on a separate set of 200 videos randomly sam-
pled from the training dataset. For human preference, we
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Figure 4. Qualitative comparison on articulated motion. The blue box indicates the input image. Red boxes highlight common failure
modes in baselines, including structural distortion (cyclist’s legs) and physical implausibility (three-legged lion, inconsistent leg motion).
In contrast, our method (SAM2VideoX) consistently maintains structural integrity. ”+ Fine-tuning” is the LoRA fine-tuning baseline; "+
Mask sup.” is the mask supervision baseline. We recommend viewing the supplementary videos.

conduct a double-blind user study using 40 randomly sam- at 8 fps and 720x480 resolution, using 50 denoising steps
pled prompts. Participants are presented with two side-by- with guidance scale 6.0.

side videos (Ours vs. Baseline) in random order and asked

to select the preferred one based on motion smoothness and

subject consistency. All methods generate 49-frame videos



Table 1. Quantitative comparison on established video generation benchmarks. Our method outperforms all fine-tuning baselines
and achieves performance comparable to the strong open-source model HunyuanVid, while significantly surpassing it in perceptual quality
(FVD). BC: Background Consistency; SC: Subject Consistency; MS: Motion Smoothness. Extended Motion Score incorporates 12V Sub-
ject and Background Consistency (weight 0.5). Higher Motion/Extended Motion Scores indicate better structure preservation; lower FVD
indicates superior perceptual quality. Baselines with Dynamic Degree lower than the base model are excluded from VBench comparisons

to ensure fairness.

Method BC SC MS  Motion Scoret  Ext Motion Scoret FVDJ]
CogVideoX (base model) 97.30 94.43 98.17 94.80 95.50 660.29
+ LoRA Fine-tuning 97.44 9347 97.76 94.02 94.74 465.00
+ Mask Supervision - - - - - 397.73
+ REPA 97.41 9199 97.31 92.91 93.77 457.59
+ SAM2VideoX (Ours) 97.88 94.76 98.45 95.51 96.03 360.57
HunyuanVid 96.85 9532 98.76 95.62 96.24 583.99

[J Ours [J Baseline

vs. CogVideoX-5B ‘ 64% ‘ 36%
vs. +LoRA ‘ 66% ‘ 34% ‘
vs. +REPA ‘ 84% ‘ 16%

Figure 5. Human preference win rates. Participants were shown
pairwise comparisons and asked to select the video with *superior
limb consistency and fewer motion artifacts’. Our method was
strongly preferred (> 64%) over all baselines, confirming its su-
perior ability to generate plausible, artifact-free motion.

5.1. Results

SAM2VideoX achieves superior structure preservation
and perceptual quality compared to all baselines. As
shown in Table 1, our method outperforms the base
CogVideoX model and other fine-tuning strategies across
all reported metrics. Notably, we achieve an FVD of
360.57, a substantial reduction compared to the strongest
baseline (LoRA Fine-tuning at 465.00) and the REPA base-
line (457.59). This indicates that our model generates
videos with significantly higher perceptual fidelity. Fur-
thermore, our method attains the highest scores in Motion
Score (95.51) and Extended Motion Score (96.03), con-
firming that distilling internal priors from SAM2 effectively
suppresses the temporal flickering and identity degradation
often observed in standard video diffusion models.

Feature distillation outperforms coarse mask supervi-
sion. We compare our feature-level alignment against a
baseline trained with explicit mask supervision (“+ Mask
Supervision”). We build this baseline by adding a linear
projection layer on top of P to predict the mask. While
mask supervision delineates subject boundaries, it lacks the
fine-grained internal correspondence information necessary
for articulating complex motion. Consequently, the mask

supervision baseline suffers from severe structural artifacts
(e.g., cyclist and lion legs in Fig. 4) and achieves a poorer
FVD score of 397.73 compared to our 360.57. Note that we
exclude the mask supervision baseline from VBench consis-
tency metrics in Table | because it collapses towards static
generation (Dynamic Degree 44.59 vs. Base model 45.95),
which would yield artificially inflated consistency scores.

Video-aware priors are essential for temporal consis-
tency. To validate the necessity of using a video foun-
dation model (SAM?2) as the teacher, we compare against
REPA [36], which aligns DiT features with the image-based
DINOvV3 encoder. As DINO is trained on static images, it
lacks inherent knowledge of temporal continuity. This lim-
itation is reflected in Table 1, where REPA yields a signifi-
cantly lower Motion Score (92.91) compared to our method
(95.51). This result confirms that aligning with SAM2’s
memory-based features transfers crucial temporal coher-
ence signals that image-only encoders cannot provide.

Human evaluators consistently prefer our method. As
illustrated in Figure 5, our method achieves the highest win
rates in a double-blind user study, outperforming the base
model and fine-tuning baselines by a wide margin. Qualita-
tive results in Figure 4 corroborate this preference: while
baselines often struggle with limb consistency (e.g., the
disappearing/reappearing legs of the cyclist), our method
maintains subject identity and structural integrity through-
out the sequence. This demonstrates that our bidirectional
alignment strategy successfully translates the robust seg-
mentation priors of SAM2 into high-fidelity video gener-
ation.

5.2. Ablations

We conduct systematic ablation studies on the VBench-12V
85-image subset to isolate the contribution of our two core
components: the LGF fused bidirectional SAM2 teacher
and the LGF-KL distillation loss.



Configurations Motion Score?  Ext Motion Scoret
+ LoRA only 94.02 94.74
w/o LGF 94.58 95.24
w/o KL 94.51 95.16
w/ Forward-Only Teacher 95.07 95.58
w/ Separate Projectors 94.68 95.24
Feature-Space Fusion 94.16 94.83
saM2videoX (LGF Fusion) 95.51 96.03

Table 2. Ablation study on core components (VBench-12V,
7). Using a simple /2 loss ("w/o LGF”) and an /2 loss within
LGF space ("w/o KL”) both yield marginal improvements only,
confirming our full LGF-KL’s superiority in capturing motion
structure. Removing bidirectional processing (”w/ Forward-Only
Teacher”) or fusion mechanisms ("w/ Separate Projectors”) de-
grades performance, while feature-level adding (“Feature-Space
Fusion”) underperforms ours ("LGF Fusion™), validating each de-
sign choice.

w/ LGF Loss w/o LGF loss

Figure 6. Qualitative ablation of our LGF-KL Loss. (Top) Us-
ing a standard ¢ loss ("w/o LGF Loss’) on raw features results in
visible temporal jitter (note the flickering in the arm). (Bottom)
Our full method ("w/ LGF Loss’) produces a visibly smoother and
more stable motion, validating the design of aligning relational
distributions (LGF-KL) over absolute values (¢2).

LGF fusion is essential to resolve bidirectional conflicts.
We validate our teacher design in Table 2. While using only
the forward stream (F¥9 ) yields a strong baseline (Motion
Score 95.07), naively incorporating the backward stream
via separate projectors causes gradient conflicts, destabiliz-
ing training and degrading performance. More critically,
fusing forward and backward streams directly in the fea-
ture space leads to catastrophic collapse (94.16), barely
outperforming the LoRA-only baseline. This suggests that
raw features from opposite temporal directions interfere de-
structively. By contrast, our proposed LGF Fusion acts as
a harmonic integration, resolving these conflicts to achieve
the highest score (95.51). Qualitative results in Figure 7
confirm that this relational fusion is key to leveraging bidi-
rectional priors without introducing artifacts.

KL divergence outperforms /5 for structural alignment.
We further ablate the loss function design given our LGF
teacher. As shown in Table 2, applying a standard ¢5 loss

w/ Fwd-Only

LGF Fusion Feat-Space

Figure 7. Qualitative ablation of our bidirectional LGF fu-
sion.(Top) The forward-only teacher ("w/ Fwd-Only”) produces
artifacts, like the ballerina’s arm ’folding’ incorrectly (red box).
(Middle) “Feat-Space Fusion” causes structural tearing. (Bot-
tom) Our "LGF Fusion” correctly preserves the limb’s topological
structure, highlighting the necessity of both bidirectional informa-
tion and a robust fusion strategy.

directly on raw features performs poorly (94.58), proving
that strict element-wise alignment is too rigid for trans-
ferring high-level motion priors. More revealingly, apply-
ing an /5 loss within the LGF space performs even worse
(94.51). This demonstrates that the LGF operator alone is
insufficient; a naive value-based alignment of its relational
features fails to capture the correct motion priors. It is the
combination of LGF (to capture relational structure) and the
KL divergence (to align probabilistic distributions) that is
essential. Our full LGF-KL loss achieves the best perfor-
mance (95.51), confirming that aligning the relative spatio-
temporal distributions via KL divergence is superior to forc-
ing exact value matches. Figure 6 visually demonstrates the
smoother temporal transitions achieved by this design.

6. Conclusion

In this paper, we propose a novel framework that effectively
distills the rich, structure-preserving motion priors from
SAM2 into video diffusion models. Departing from meth-
ods relying on external control signals or limited datasets,
we demonstrate that aligning generative features with dense
correspondence representations offers a more intrinsic so-
lution to articulated motion generation. Our core contri-
butions—bidirectional feature fusion and the Local Gram
Flow loss—enable the seamless transfer of fine-grained mo-
tion knowledge without requiring architectural modifica-
tions. Extensive experiments validate that our approach
not only achieves superior performance on standard bench-
marks but also paves the way for leveraging discriminative
vision foundation models to enhance generative video dy-
namics.
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Method BCtT SCt MS?T Motion Score? Ext Motion Scoret

Track4Gen* 97.32 94.67 98.35 95.11 95.69
SAM2VideoX (Ours) 97.88 94.76 98.45 95.51 96.03

Table 3. Quantitative Analysis of Additional Baseline. Comparison between point-based control and our feature-based approach.
Track4Gen* denotes the modified version adapted to the CogVideoX architecture. Abbreviations: BC (Background Consistency), SC
(Subject Consistency), MS (Motion Smoothness).

A. Implementation Details

Architecture. Within the projection head of the Video Feature Alignment module, we employ SiLU activation and Group
Normalization across all convolutional and MLP layers. For the interpolation layer, we utilize a temporal interpolation factor
of 4, utilized alongside a skip connection with a kernel size of (3,1, 1) and 768 channels. Subsequently, the widths of the
following MLP layers adhere to the sequence 768 — 512 — 256 — 256.

Training Details. We apply LoRA [11] exclusively to the attention modules, keeping all other backbone parameters frozen.
For the LoRA parameters, we employ a linear warmup of 200 steps, gradually increasing the learning rate to a peak of 1074,
For the projector, we utilize a cosine decay scheduler with a 150-step warmup; the learning rate is initialized at 5 x 10~% and
decays to a minimum of 1 x 10~°. Additionally, we implement a gradient clipping threshold of 1.0.

A.l. Evaluation Protocol and Metrics

Evaluation Subset Selection. To ensure our evaluation aligns with the distribution of our training dataset (which focuses
on articulated motion), we curated a subset of 85 prompts from the VBench-12V [12] benchmark. The selected prompts
predominantly feature human or animal subjects. We excluded generic scenery or abstract textures lacking distinct structural
subjects, as these samples do not adequately challenge the model’s structure-preserving capabilities.

Metric Selection. Since our primary objective is structure-preserving video generation rather than artistic creation, we
exclude general visual quality metrics such as Aesthetic Quality and Imaging Quality, as they are less relevant to evaluating
structural fidelity. To provide a unified quantitative evaluation, we formulate two composite scores: Motion Score and
Extended Motion Score. Following the standard VBench-I12V protocol, we first apply min-max normalization to all individual
sub-metrics to map them into a unified range. Let 8pg, Ssmootn, and Seup; denote the normalized scores for Background
Consistency, Motion Smoothness, and Subject Consistency, respectively. The Motion Score is defined as the arithmetic mean
of these three core structural metrics:

<§bg + §smuoth + §subj
Smotion = 3 (1)

To further account for fidelity to the conditioning image, the Extended Motion Score incorporates I2V consistency metrics.
We assign a weight of 0.5 to both 12V Subject Consistency (Sipy.s) and 12V Background Consistency (Sipy.p), reflecting a
balance between temporal coherence and input fidelity. The formulation is given by:

Sbg + Ssmooth T Ssubj + 0.5 - 8ioy.s + 0.5 - Sipvep
4

Sext = (2)

B. Additional Experiments

Dense Features Outperform Sparse Trajectories. To ensure a fair comparison within the DiT-based CogVideoX [34]
architecture, we align the experimental implementation by adapting the Track4Gen [13] projector to mirror our design:
specifically, employing an interpolation layer followed by three MLP layers. Furthermore, we exclude the refiner module
to strictly isolate the efficacy of the distillation objective. As shown in Table 3, our method outperforms Track4Gen*. This
demonstrates the superiority of dense SAM?2 [23] features over sparse point trajectories, as the latter are prone to performance
degradation caused by error accumulation in optical flow estimation (e.g., RAFT [29]).

Explicit Backward Constraints are Redundant. We investigate the impact of extending the Local Gram Feature (LGF) loss
to incorporate a backward temporal constraint (i.e., computing similarity between frame ¢ and ¢ — 1). As shown in Table 4,
this formulation yields inferior results compared to our forward-only design. We attribute this to the inherent bidirectionality
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Configurations Motion Scoret  Ext. Motion Scoret

Bidirectional LGF 94.87 95.52
LGF loss (Ours) 95.51 96.03
23rd Transformer Block 94.93 95.54
24th Transformer Block 94.44 95.14
25th Transformer Block (Ours) 95.51 96.03
26th Transformer Block 94.44 95.12
27th Transformer Block 94.68 95.36

Table 4. Ablations on Temporal Directionality and Injection Depth. We analyze two key design choices: (a) the directionality of the Local
Gram Feature loss, and (b) the optimal depth for feature injection within the DiT architecture. The highlighted row indicates our default
configuration.

of the distilled SAM 2 features; explicitly enforcing backward consistency creates computational redundancy and introduces
over-constraints that hamper the generation dynamics. Therefore, we retain the forward-only formulation.

C. Additional Qualitative Results

We provide additional visual comparisons to further substantiate the effectiveness of SAM2VideoX. Specifically, we con-
trast our method with competing baselines and state-of-the-art models, highlighting superior structural fidelity and temporal
coherence across diverse motion scenarios.

D. Theoretical Analysis of Feature Fusion

Definition of S(-). As referenced in Sec. 4.4, S(-) denotes a temperature-scaled softmax operation applied to each similarity
vector, normalizing the 7 x 7 similarity scores into a probability distribution. Given similarities {2; } X |, we compute

exp (z;/T)
Yy exp (z/T)

and in all experiments we set the temperature to 7' = 0.1.

pi =

; ; _ pfwd _ pbwd _ pfwd _ pbwd
Interference in Feature-Space Fusion. Let a = F [0 ¢, b = FPU0 ¢ = F0 1y, and d = FU0 ¢ represent
directional SAM?2 memory features across two consecutive frames. The ideal local Gram similarities for the forward and

backward teachers are a - ¢ and b - d, respectively. If we first fuse forward and backward features in the feature space,
fi=ka+ (1 —k)b, fiyr1=ke+ (1—-k)d,
and then compute the local Gram, we obtain
Grea = fr - frior =k*(a-c)+ (1 —k)*(b-d) + k(1 —k)(a-d+b-c).

The final term introduces cross-correlations (a - d and b - ¢) that couple forward features at frame ¢ with backward features at
frame t+1. These cross terms lack a counterpart in the valid teacher similarity matrix (neither purely forward nor backward),
thereby mixing incompatible temporal contexts. Consequently, the student model is supervised to learn spurious correlations
absent in the teacher’s distribution, leading to temporal inconsistencies.

In contrast, our LGF fusion computes local Gram similarities for each direction separately and fuses them only in the LGF
space:

gt = k(a-¢)+ (1 —Ek)(b-d).

This formulation eliminates cross terms, yielding a convex combination of two consistent teacher signals and circumventing
the interference inherent in feature-space fusion.
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Figure 8. Extended Visual Comparisons with Baselines. The blue box indicates the conditioning input image, while red boxes highlight
structural failure modes observed in baseline methods.

E. Limitations and Future Work

Limitations. We acknowledge that our model’s performance is effectively bounded by the inherent capabilities of the un-
derlying backbone, CogVideoX. specifically, in scenarios involving high-dynamic or complex motion—such as fast-paced
dancing or competitive sports—we observe that generation artifacts may remain pronounced. This suggests that while our
method significantly improves structural alignment, the ultimate video quality in extreme motion cases relies on the genera-
tive capacity of the base model.
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CogVideoX

SAM2VideoX HunyuanVid

CogVideoX

SAM2VideoxX HunyuanVid

Figure 9. Visual Comparison with State-of-the-Art Open-Source Models. Notably, despite HunyuanVid [16] possessing 13B parame-
ters, our SAM2VideoX (5B) achieves comparable generation quality.

Future Work. Our current pipeline relies on SAM 2 for video object segmentation and tracking. While the model demon-
strates robust performance for single objects, we observe performance degradation in multi-object scenarios. Specifically,
when prompted with visual cues (e.g., bounding boxes or points) for multiple distinct entities, the tracker struggles to maintain
consistent identities across temporal sequences. Consequently, exploring effective feature representations for multi-object
video generation remains an open and promising direction for future research.
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Figure 10. Additional Qualitative Results. Our SAM2VideoX maintains robust structural consistency across a diverse range of motion
dynamics.
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